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Introduction
Spatial variability is a very impor-
tant quality of air pollutants for
many areas of EPA policy. Obviously,
monitoring regulations and network
design depend heavily on knowl-
edge of spatial variability, as do
implementation strategies and poli-
cies. Control strategies also depend
heavily on this knowledge, which
helps state and local agencies decide
whether a local or regional program
may be more effective. Action day
programs and public information
programs also depend on this infor-
mation to facilitate decisions regard-
ing how large of an area should be
included in various alerts or infor-
mation publications. Traditionally,
spatial variation has been depicted
by isopleth maps, concentration
maps, and box plots of various sites.
Each of these methods gives a crude
idea of spatial variability. This paper
explores a new way to visualize
large-scale spatial variability and
also presents an extension of this
method in an attempt to characterize
spatial variability in a useful way.
The new methodology is presented
along with its application using data
from several pollutants nationwide.

Characterizing 
Spatial Variation 
One of the first questions arising
from almost any investigation of an
air pollutant is, “What is the spatial
and temporal variability or varia-
tion?” Very often, the spatial part of
the question is answered with a map
showing ranges of pollutant levels

Figure 1. PM10 annual averages (county maximum).
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Abstract
Spatial variability is an important quality of air 
pollutants for many areas of policy within the U.S.
Environmental Protection Agency (EPA). Obviously,
monitoring regulations depend heavily on knowledge 
of spatial variability. In addition, control strategies
depend on this knowledge, which helps determine
whether a local or regional program would be more
effective. Action day programs and public information
programs also benefit from this knowledge.

Traditionally, spatial variation has been depicted by
isopleth maps, concentration maps, and box plots of
various sites. Does this really give us useful knowledge
about spatial variation? This paper explores a new way
to examine spatial variability on a national scale and
also presents an extension of this method in an attempt
to characterize spatial variability in a useful way. The
new methodology is presented along with its applica-
tion using PM2.5 and ozone data.

by county. These maps show where
pollutant levels are higher and lower
and, in general, where information is
available or where monitoring sites
are located (see Figure 1).

After the work of producing the
map is done, the question is usually
considered answered. However, this
is a crude view of spatial variability.
Looking at such a map, counties with
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higher values are easily spotted but 
it is hard to visualize how close 
adjoining counties are to others. 
Some analysts go a step farther and 
show a map of an estimated surface 
of pollutant levels. The latest and 
most popular way to do this is called 
kriging.1 Kriging is a spatial interpo
lation technique developed for the 
mining industry in South Africa to 
predict ore reserves. With an interpo
lated surface, all the blank areas on 
the map are gone, and it is some
what easier to see how pollutants 
may vary over space. Figure 2 
provides an example of a kriged 
surface. Because the surface itself is 

data are a series of measurements 
representing differences between two 
locations paired by time. Thus if di is 
the difference between two readings 
at two monitors at a given time i, 
then di = x1i–x2i. If x1 and x2 are both 
random variables from two locations, 
then the variance of the difference is 
V(x1–x2), or V(d). In fact, the vari
ance of the difference is V(d) = 
V(x1)+ V(x2) – 2COV(x1,x2). This is the 
sum of the variances of the two 
random variables minus twice the 
covariance (a measure of how much 
the two random variables vary 
together). Basically, this says that the 
more the two random variables 

distance of zero (0), there is still 
variation left that does not go away 
even if the sites are at the same 
location. This is called the nugget. 
Similarly, there is a point, called the 
sill, at which the variance levels out. 
The area between 0 and the sill is 
called the range. The range can be 
thought of as the region where there 
is a correlation between two sites. 
The region after the sill can be 
thought of as the distances at which 
sites appear to be independent of 
each other. 

Figure 3. Schematic of a variogram. 

smoothed by the process, kriging change together (they go up or down 
actually hides some of the spatial together but they do not necessarily 
variation, which may or may not be change the same amount), the 
a good result depending on the smaller the variance of the difference 
purpose of the analysis. will be because the values at two 

At the heart of kriging is a con- different sites would be expected to 
cept called a variogram, which is a vary together more if they are close 
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distance 
representation of the statistical vari
ance of the difference between two 
data points on a map as it relates to 
the distance between the two points 
on the map. Much like the mean, 
which is a measure of the center 
of a distribution of data, the variance 
is a measure of the spread of a 
distribution of data. In this case, the 

Figure 2. Example of a kriged surface. 

together and vary more independ
ently if they are far apart. This leads 
to the concept of the variogram, 
which, in this case, is the relationship 
between the variance of the differ
ences and the distance between two 
sites (Figure 3). The dotted line in 
Figure 3 shows how the variance 
changes with the distance. At a 

range 

Figure 4 shows how PM2.5 data 
can be used to plot the variance of 
the difference against distance. The 
difference in daily PM2.5 values was 
calculated for various sites across the 
country. The variance of the differ
ences was calculated, and the 
latitude and longitude of each site 
were used to calculate the distance 
between two sites. Each pair of sites 
then had a variance of the difference 
and a distance, which were plotted 
for all possible pairs of sites across 
the country. 

Looking at the scatterplot, it is 
clear that there is no simple relation
ship between the variance of the dif
ference and distance. A very dense 
cluster of points seems to center over 
25 at 0 distance and then slowly 
increases as the distance increases. 
However, from a casual examination 
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of the plot, enough points fall outside Figure 4. Variance of the difference vs. distance. 

the dense cloud (in fact, many were 
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cut off to actually see any trend at all 
by setting the maximum variance 
displayed to 500) to bring into ques
tion the assumption used in kriging, 
as shown in Figure 3, that the vari
ance of the difference over distance 
can be described by a line. 

The point of defining all these 
terms is to show that the variance of 
the differences between two measure
ments taken at the same time but at 
different locations is generally 
increasing because the covariance is 
decreasing over the distance. Because 
the correlation is covariance normal
ized by the variances, we can charac
terize the spatial dependence of data 
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from two locations through the corre
lation. Because the variance of the 
difference generally increased, the 
covariance and, therefore, the correla
tion should decrease over distance. 
This raises the question, how does the 
correlation vary over distance? To 
answer this question, PM2.5 data were 
used to calculate the correlation of 
daily PM2.5 values between two sites, 
and the latitude and longitude were 
used to calculate the distance between 
two sites. Thus for each pair of sites, 
we have correlation and a distance. 
Looking at all the possible pairs of 
sites, scatterplots may be generated, 
such as the one in Figure 5. The values 
of the correlations are restricted to all 
values between -1 and 1, but the vari-

Figure 5. Correlation (r) vs. distance for PM2.5. 
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summarized by box plots of the data display shows only how well the 
ance of the distance must be positive. 
These restrictions help provide a 
much more coherent picture. There 
is, again, a dense cloud that trends 
downward as the distance increases. 
Also, there are many points not in the 
dense cloud that fall beneath the 
trend. Again, these points are numer
ous enough to question the simplicity 
of the variogram used in kriging. 

To simplify what is seen in this 
scatter plot, the data could be 

over 20-km intervals. This would 
result in Figure 6, which shows a 
much less confusing picture. The 
whiskers represent the maxima and 
minima of the intervals. The box 
represents the 75th and 25th per
centiles, the plus sign (+) represents 
the mean, and the single line in the 
box represents the median or 50th 
percentile. Now a trend is much 
more apparent in the correlation than 
in the scatterplot. However, this 

data “track” or follow a pattern. It 
does not show how well the data 
from different sites actually agree. In 
other words, the data from one site 
might track the data from another 
site very well but still have very 
different concentrations on average 
than data from the other site. Here 
we present a solution to this prob
lem, a coefficient of perfect agree
ment, or CPA. 
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Figure 6. Box plot of correlation vs. distance. on the line y = x , and the CPA = 0 if 
there is no systematic agreement. 

1.0 One way to create this would be to 
include a term in the denominator of 

0.7 the correlation coefficient as shown 
in Equation B.

0.4 
If there were no agreement, this 

term would become large and the 0.1 
CPA would become small (or close to 
0). If there were perfect agreement, 
the term would be 0, and, because all 

-0.2 

-0.5 the points would fall on a straight 
line, the rest of the equation (the 

-0.8 correlation coefficient) would be 1, 
0  50  100 150 200 250 300 350 400 450 500 allowing the CPA to be 1. However, 

Distance (km) if the two data streams fell on a 
straight line that did not have a slope 
of 1 and an intercept of 0, then the 

The Coefficient of 
Perfect Agreement 
The goal of formulating a CPA is to 
give a measure of agreement with 
many of the characteristics of the 
correlation coefficient. 

The classical correlation coefficient 
is a measure of how well paired 
values track each other. The value 
0 (zero) means they do not track each 
other at all, whereas a value of 1 
means they track each other perfectly 
(all the points in a scatterplot would 
be on a straight line). A value of -1 
also means perfect tracking, but the 
scatterplot line would have a down
ward or negative slope. The correla
tion coefficient is defined as shown 
in Equation A. 

As stated earlier, the correlation 
coefficient has a nice feature in that, 
when the data from two sites agree 
in a perfectly linear fashion, then r is 
1 (or -1). However, if the data agreed 
perfectly, the only line that mattered 
would be a line with a slope of 1 and 
an intercept of 0 (the line y = x). 
Therefore, the first characteristic we 
desire in a CPA is that the CPA = 1 
when all points in a scatterplot fall 

Equation A 

Equation B 

Equation C 

Equation D 
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The trend dips quickly and then falls 
off gradually. If, as before, the data 
are displayed as box and whisker 
plots, the more pronounced trend in 
Figure 8 is revealed. This gives a 
national picture of the spatial varia
tion of PM2.5. The mean CPA starts 
off at around 0.6 and falls off rapidly 
out to about 150 km, then falls off 
gradually from there to about 0.2 at 
500 km. The maximum and mini
mum of the coefficient (the whiskers 
on the box and whiskers plot) still 
vary almost across all possible values 
of the coefficient (perfect agreement, 
or 1, to no agreement at all, or 0) at 
any distance. Quantitatively, inter
pretation of this coefficient is difficult 
at best. Where it might be of most 
use is in comparisons with other 
pollutants. 

Comparison 

of Pollutants 

Pollutants can be compared by 
following the previous steps used to 
produce Figure 8. The means in 
Figure 8 (the pluses [+]) can be 
joined by a line for several pollut
ants. This is where the usefulness 
of a CPA can be demonstrated. A 
comparison between pollutants 
could be made to help guide policy. 
For example, daily values of PM2.5, 
daily values of PM10, hourly values 
of CO (carbon monoxide), and 
hourly values of ozone were used to 
produce Figure 9. As can be seen 
from the plot, PM2.5 has a mean CPA 
that is above ozone for most of the 

CPA would certainly not be 1 but Now the CPA is unitless. 
less than 1 because y would not Monte Carlo studies of the CPA 
equal x everywhere. This seems to were performed by generating 
have all the characteristics desired in values from a straight line. In linear 
a CPA. regression, Y = a + bX + e, where e 

However, note that the Σ(x – y)2 has a normal distribution with a 
term will get larger and larger as the mean of 0 and a variance of σ2. This 
number of data points gets larger last term is also called the variation 
and larger, making the CPA get about the line. Five hundred sets of 
smaller and smaller. Unless there values were generated with different 
were a situation of perfect agree- slopes, intercepts, and variations 
ment, then such a CPA could be about the line. Slopes ranged from 0 
made to be arbitrarily small by to 5, intercepts ranged from -10 to 10, 
taking larger and larger numbers of and the variance about the line, σ2, 
data points to compute the CPA. A ranged from 0 to 100. In this case, 
further refinement would then be whenever σ2 is 0, then r is 1 (a per-
defined as shown in Equation C. fect linear relationship). However, 

This solves the sample size prob- the CPA is equal to 1 only if a is 0, 
lem, but there is one problem left. b is 1, and σ2 is 0. The studies found 
The correlation coefficient is a unit- the CPA to be relatively sensitive to 
less or unit invariant quantity. This the lack of perfect agreement when 
CPA is not, but it should be. Units there was only a perfect linear rela
have been reintroduced into the tionship (when r is 1 and the CPA 
formula. Because a units conversion should be less than 1). 
could result in a different CPA value, 
this is not a desirable trait for a coef- Application
ficient. The added term is divided by 

Using the CPA instead of r, a new 
the same divisor used to normalize 
the covariance to get the correlation 

scatterplot can be constructed (Figure 

resulting in Equation D. 
7). Now the denser part of the distri
bution of points has a different trend. 

Figure 7. CPA vs distance (km). 
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Figure 8. Coefficient of perfect agreement vs distance (km). 
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Figure 9. Comparison of mean CPA vs distance (km). 
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Conclusions References 
A CPA can be formulated that can be 1. Matheron, G. Principles of 
of some use in assessing spatial vari- Geostatistics. Economic Geology. 1963, 
ation on a national scale. The statisti- 58, 1246–1266. 
cal properties of the CPA used here 
are not known, and the CPA cannot 
be used to quantify this variability. 
However, it can be a useful compara
tive tool to visualize differences in 
national scale spatial variation 
among pollutants. 
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